Chinese
To Home
Group Activity
Seminar
Rewards
About Us
Other Links
 
 
Carbon Knowledge
New Carbon Materials
 
 
 
  A red anatase TiO2 photocatalyst for solar energy conversion  
G. Liu, L. C. Yin, J. Q. Wang, P. Niu, C. Zhen, Y. P. Xie, H. M. Cheng*
Energy & Environmental Science,5 (11), 9603-9610 [PDF Download]
    Narrowing the bandgap of wide-bandgap semiconductor photocatalysts (for instance, anatase TiO2) by introducing suitable heteroatoms has been actively pursued for increasing solar absorption, but usually suffers from a limited thermodynamic/kinetic solubility of substitutional dopants in bulk and/or dopant-induced recombination centres. Here we report a red anatase TiO2 microsphere with a bandgap gradient varying from 1.94 eV on its surface to 3.22 eV in its core by a conceptually different doping approach for harvesting the full spectrum of visible light. This approach uses a pre-doped interstitial boron gradient to weaken nearby Ti?O bonds for the easy substitution of oxygen by nitrogen, and consequently it substantially improves the nitrogen solubility. Furthermore, no nitrogen-related Ti3+ was formed in the red TiO2 due to a charge compensation effect by boron, which inevitably occurs in common nitrogen doped TiO2. The red anatase TiO2 exhibits photoelectrochemical water splitting activity under visible light irradiation. The results obtained may shed light on how to increase high visible light absorbance of wide-bandgap photocatalysts.
 
 
Copyright©Advanced Carbons Division Shenyang National Laboratory for Materials Science.
Address:72 Wenhua Road Shenyang, China 110016 Tel:86-24-23971788 83978238 Fax:86-24-23971215 Email:fli@imr.ac.cn