Chinese
To Home
Group Activity
Seminar
Rewards
About Us
Other Links
 
 
Carbon Knowledge
New Carbon Materials
 
 
 
  Nanosize SnO2 confined in the porous shells of carbon cages for kinetically efficient and long-term lithium storage  
G. M. Zhou, D. W. Wang, L. Li, N. Li, F. Li*, H. M. Cheng
Nanoscale,5 (4), 1576-1582 [PDF Download]
    We explore a hybrid material consisting of SnO2 nanoparticles (NPs) embedded in the porous shells of carbon cages (SnO2-PSCC). The hybrid material exhibits improved kinetics of lithiation-delithiation and high reversible capacity, and excellent cyclic stability without capacity loss over 100 cycles at 500 mA g (1) with a coulombic efficiency close to 100% after the initial cycle. This can be ascribed to the high electrical conductivity, the hierarchical porosity and the confinement effect of the PSCC on the volume change of SnO2 NPs. The material has a large reversible capacity of 460 mA h g(-1) at a high current density of 5 A g(-1) due to a short ion diffusion length in the bulk and large number of inter-pore ion transport channels. These results provide insight into improving the lithium storage performance of SnO2 by facilitating the reaction kinetics and indicate that this hybrid material has great potential for use in high-rate and durable lithium ion batteries.
 
 
Copyright©Advanced Carbons Division Shenyang National Laboratory for Materials Science.
Address:72 Wenhua Road Shenyang, China 110016 Tel:86-24-23971788 83978238 Fax:86-24-23971215 Email:fli@imr.ac.cn